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An analysis is presented of the creeping motion around a flow-oriented slender 
particle in a material medium subject to a uniaxial extension in the far field. A 
general quasi-steady rheological model is adopted, of a kind representing isotro- 
pic (Noll) fluids subject to time-independent velocity gradients, or isotropic 
solids subject to time-independent strain fields. The analysis is based on the 
premise of a shear-dominated motion in the near field, which is joined asymptotic- 
ally to the extension-dominated motion in the far field. For axisymmetric parti- 
cles, and to the order of terms in slenderness considered here, the far-field 
perturbation due to the particle can be represented as a distributed coaxial line 
force in a transversely isotropic medium whose strength is governed by the struc- 
ture of the near-field rheology. 

On the basis of the results for a single particle, a formula is derived for the 
stress contribution due to the presence of oriented slender fibres in dilute 
suspension in a non-Newtonian fluid. For certain simple rheological models 
exhibiting a strong shear-thinning behaviour, the particle contribution to tensile 
stress is greatly diminished relative to the Newtonian case, as was predicted by 
an earlier rudimentary treatment (Goddard 1975). The present analysis is 
thought to be highly promising for applications to general composite materials. 

1. Introduction 
The theoretica1 study of heterogeneous media has proved to be an interesting 

pursuit in the overall development of continuum physics and mechanics, and 
one whose influence extends beyond the applications to rheology contemplated 
here. In  the present work we are concerned with a specific example of such a 
medium consisting of slender rigid particles suspended in a fluid. 

It is already well known that slender oriented inclusions in a matrix exhibiting 
the linear rheological behaviour of the Hookean solid or the Newtonian fluid 
can have an enormous effect on the gross mechanical properties of the medium, 
which in the case of solids is relevant to the theory of fibre-reinforced composites 
(Russel & Acrivos 1972). In  the case of Newtonian fluids, Batchelor (1971) has 
offered a theoretical analysis, well confirmed by subsequent experiments (Mewis 
& Metzner 1974; Weinberger & Goddard 1974), which predicts tensile stresses 
greatly in excess of those for the pure suspending fluid in suspensions of slender 
part.icles oriented by an extensional flow or ' pure-straining ' motion. Besides 
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the obvious analogy to the Hookean solid, this has implications for the rheology 
of such suspensions and more general fluids (Weinberger & Goddard 1974). 

With these considerations in mind, it is interesting to inquire as to the possible 
influence which nonlinear rheological behaviour in the matrix can have on the 
rheological properties of the suspension, a subject which has already been taken 
up in a previous study (Goddard 1975, hereafter referred to as I). Apart from 
its direct relevance to suspensions of fibres in non-Newtonian fluids, such as 
' fibre-loaded ' polymer melts, the general problem arising from nonlinear mecha- 
nical response of the matrix material holds some practical interest for solid 
composites as well. In  such systems it is known that various nonlinear effects, 
such as plastic yielding of the matrix in the vicinity of inclusions, can cause large 
departures from theories based on an assumed Hookean behaviour (Kardos 
1973). Thus, in addressing ourselves to a problem involving a rheologically 
complex suspending fluid, we might reasonably hope to shed light on related 
problems involving complex solids. 

The subject of suspensions of neutrally buoyant particles in incompressible 
liquids has received frequent attention in the recent literature, and within those 
confines we shall further restrict our discussion to the limit of infinitely dilute 
suspensions, where interaction between particles is considered to be entirely 
negligible. To deduce the properties of such suspensions it suffices, then, to 
treat the problem of a single particle or inclusion immersed in an infinite body of 
fluid. 

Hence, with the usual assumption of particles small relative to the typical 
macroscopic length scales, we consider the case of a velocity field having constant 
velocity gradient at infinity, say 

with I' = ( V V ) ~  -+ I'@) = (VV(O))~, a constant, 

for 1x1 -+a, where the superscript T denotes, here and below, the transpose of a 
second-rank tensor. Furthermore, we adopt the postulate of 'creeping ' or 
inertialess flow, based on the assumed smallness of an appropriate Reynolds 
number for the particles, which leads to the governing equations 

V . T  = 0, v . v  = 0, (1.2a, b )  

together with (1.1) and the appropriate boundary conditions on the rigid particle 
surface. In  addition, one must have a rheological equation relating the stress 
tensor T to the kinematics of the flow field, i.e. to I'. 

We are interested here in the special case of elongated particles maintained 
in a steady orientation by a steady-state uniaxial extension of the form 

(1.1) 1 v.+vco) = r(o).x, 

(1-3) I vCo) = e,[zi, - 

I'@) = eo[i,i,-+(isis+iyiy)] = e,[i,i,- $(irir+ioio)], with 

where e, ( > 0) denotes the extension rate and (x, y, z )  and ( r ,  0, x )  denote respec- 
tively Cartesian co-ordinates and the associated cylindrical-polar system, as 
indicated for the upper half-space in figure 1. We assume for simplicity that the 
particle is symmetrical with respect to the midplane z = 0 and hence that it 
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FIGURE I .  Upper-half space, showing upper half of particle and co-ordinates. 

does not translate with respect to the fluid at infinity. Then, on the rigid stationary 
surface 9, say, of the particle we may assume the fluid velocity to vanish 
identically. 

We are specifically interested here in the further simplifications that arise in 
the ‘slender-body ’ limit, where, in terms of a particle aspect ratio a, we have that 

a = l/a-+co, (1.4) 

a and 1 being characteristic particle dimensions (or semi-axes) in the radial ( r )  
and axial (2) directions respectively. Also, the particle surface is assumed to 
possess a degree of smoothness, to be specified further below. 

We recall that Batchelor (1971) has employed a refined version of the classical 
slender-body theory of Burgers (1 938) to treat the Newtonian-fluid problem, 
and the present author (I) has recently discussed the corresponding non- 
Newtonian problem, which indicates the possibility of significant departures 
from the Newtonian-fluid results. While the analysis of the latter work was 
intended to provide an approximate treatment of closely spaced particles in 
non-dilute suspensions, it  served also to emphasize the general need for a proper 
treatment of rheological complexity and far-field effects in related problems. 

12-2 
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The present work considers such effects for an isolated particle in order both to 
improve the rudimentary slender-body theory proposed earlier for non-dilute 
suspensions and to provide a treatment of dilute suspensions. 

As in the previous work we shall a t  the outset admit a rather general type of 
rheological behaviour for the fluid, characteristic of a No11 (‘simple’) fluid subject 
to a flow of constant stretch history (Truesdell 1966, p. 65; Pipkin 1972, p. 124). 
We recall that flows of this type are, by definition, such that their velocity 
gradient can be rendered time-independent when viewed from the appropriate 
frame of reference, and that they include many commonly studied flows, such 
as steady simple shear and the steady simple extension that constitutes the 
basic far-field flow in the present work. 

For a broad class of fluid-like materials the stress in such flows reduces to a 
generally nonlinear tensor function of the velocity gradient. The adoption of 
this representation of stress in terms of an instantaneous velocity gradient for 
other flows amounts to an assumption of ‘ quasi-steady ’ rheological behaviour. 
As discussed in the appendix, the validity of this assumption, viewed as an 
approximation to t,he behaviour of a real fluid, depends on the nonlinear relaxa- 
tion behaviour of the fluid and the material time rates of change associated with 
the particular flow. For a given fluid, this assumption is in principle amenable to 
further scrutiny, on the basis of an adequate rheological model. It will be adopted 
here without further apology beyond the observation that the solid-mechanics 
counterpart of our rheological representation enjoys a potentially much broader 
applicability. 

In  the next section we present a general statement of the essential features 
of the slender-body analysis to be employed here, which is based on consideration 
of an asymptotic shear-dominated flow in the near field and an extension- 
dominated flow in the far field. Because of the general nonlinear behaviour of 
the fluid, these asymptotic forms may be likened to a ‘two-fluid’ model of the 
system, with a hypothetical fluid in the near field differing from that in the far 
field. As with problems involving suspensions of one distinct fluid phase in 
another, care must be taken to ensure that stresses as well as kinematic variables 
match properly. However, in the present type of problem there is of course no 
distinct interface, and the near field must join smoothly onto the far field by 
means of a continuous rheological representation (as, for example, with miscible 
fluids). 

In  I i t  was assumed that a quasi-steady, shear-dominated flow in the near 
field would imply the validity of the viscometric-flow representation for the fluid 
rheology. However, a more careful consideration in the present work will show 
this to be true only immediately at the particle surface and, otherwise, only for 
rather special, ‘shear-dominated ’ rheological models. 

By means of the explicit rheological representations discussed in the appendix, 
we shall consider in some detail the case of axisymmetric particles. For this case, 
we shall construct a first-order outer or far-field solution as the flow perturbation 
to an anisotropic medium induced by a line of force singularities situated on the 
body axis, exactly as has been done for the analogous Newtonian-fluid and 
Hookean-solid problems (Cox 1970,1971; Tillet 1970; Batchelor 1970b; Russel & 
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Acrivos 1972). Finally, after the appropriate matching with the relevant inner 
or near-field flow, we shall coqsider, in $4, the applications to dilute suspensions. 

2. Slender-body analysis 
2.1. General form of the near-Jield approximation 

I n  line with the preceding remarks, and as discussed in the appendix, we assume 
a rheological equation of the form 

T ( x )  = S(I'(X)) -p(x> I (2.1) 

for the stress field T(x) in terms of the velocity-gradient field I'(x), as defined in 
(1.1). S denotes here a symmetric tensor function, defined on arbitrary (and 
generally asymmetric) tensor arguments I', and p denotes a rheologically in- 
determinate pressure. At this point there is no real need to make explicit restric- 
tions on the function S to account for fluid isotropy and 'frame-indifference', 
that is, for the proper dependence on superimposed rigid-body rotations. Accord- 
ingly, we defer such considerations to the appendix. 

We are concerned now with certain asymptotic solutions v ( x )  to the field 
equations (1.2) augmented by the relations (2.1) and (l.l),  the conditions (1.3) 
at infinity and, finally, the boundary condition 

v ( x )  = 0,  x on 8. (2.2) 
We henceforth assume these equations to be expressed in terms of dimensionless 
variables according to the scheme 

(x*, v*, I'*, T*) = (Ex, e,lv, eor,p*e0T),  (2.3) 
where asterisks denote dimensional variables, 21 denotes the characteristic body 
length, e, the far-field extension rate of (1.1) and p* denotes a shear visoosity 
of the fluid, the shear viscosity corresponding to an assumed limiting Newtonian 
behaviour for I' --f 0. 

On the basis of the usual slender-body analysis for a- tm and the discussion 
in I, we expect to encounter a set of non-uniformly valid asymptotic approxi- 
mations for the velocity field, of the 'singular-perturbation ' variety. With that 
expectation, we consider separately a set of near-field or 'inner' approximations 
and a set of far-field or 'outer' approximations for the velocity and stress fields 
and the governing equations. 

I n  the near field, we use the decomposition 

x = r + xiz, with r = xi, +gig = ri,, (2.4) 

E = ar, i.e. (Z , j j ,F )  = (ax, ay,ar), (2.5) 

(2.6) 

and adopt the stretched co-ordinates 

which all remain O( 1) near the body surface for a-foo. The gradient operator V 
then assumes the form 

~ v, + v, = + v,, 
where 
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and, in terms of these variables, the velocity gradient in (1.1) becomes 

r = I;, + F1, (2.7) 
- 

where ro = ~(V? ,V)T ,  F, = (v,v)T. 

Thus the field equations (1.2) become 
- - 
Vo. T = - a-lVl. T, Vo. v = - IX-~V,. V. (2.8) 

The structure of (2.7) and (2.8) suggests that, as asymptotic forms for a+oo 
with, say, v+T(O)(a, f, z), one will have 

and 
with 

(2.9) 

(2.10) 

In  addition, To) must satisfy the boundary condition (2.2) at the particle surface 
and match with an appropriate far-field velocity distribution for E+co.  

The precise form of the limiting velocity field To) will depend crucially on the 
nature of the rheological function S in (2.9). In  I i t  was concluded that, in certain 
cases, there could exist solutions T(O) = O( 1) which would match with the asymp- 
totic form (1.3) of the unperturbed flow, 

do) = zi, - (r/2a) ip E xi, - E/2a --f xi, (2.11) 

for a-too, which is in distinct contrast to the Newtonian case (Batchelor 1971). 
However, the previous analysis was restricted to the zeroth-order term go), 
and no detailed description of the far field was given. 

I n  order to provide a theory involving both the near field and the far field, 
we might attempt to develop a set of near-field asymptotic expansions or per- 
turbation series for the velocity field and the associated kinematic and dynamic 
variables. Because of the generally nonlinear nature of the rheological equation 
(2.1), and the difficulty of establishing, ab initio, a connexion between the per- 
turbation series for the various field quantities, we choose to formulate the 
analysis in terms of a set of ‘successive approximations’ for the quantities 
v, I’, ..., say W, F(k ) ,  ..., for k = 0,1 ,2 ,  ... . Although we shall soon concentrate 
on the axisymmetric problem, it is thought worthwhile to consider a general 
scheme that might be applicable to more complex flows and might also be more 
easily grasped. (The reader who finds otherwise can proceed directly to $2.3.) 

Thus, a t  any given level W) of approximation for the velocity field we have a 
corresponding velocity gradient 

- r(w = F t k )  0 + Fy, (2.12) 

which is derived from W) as indicated by (2.7) and which is formally dominated 
by the term i;bk’. Then, in proceeding from one level of approximation W-1) to 
the next, i.e. W, we expect that the change in the approximation to I‘, namely 

(2.13) 
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will be dominated by the ‘component ’ 

(2.14) 

Accordingly, we take for the stress function S in (2.1) an approximation of the 
form 

S ( k )  = S( r(M) 2 SCk-1) + q(k-1): [ATJk)]T, (2.15) 

where fl denotes a fourth-rank tensor derivable from a general fourth-rank 
‘viscosity ’ tensor defined by 

q = q(r) = a S / W  (or rijkl = aflij/arlk). (2.16) 

I n  (2.15), q is of course to be evaluated a t  F(k-l). Also, the ‘double-dot’ product 
in (2.15) indicates the ordered contraction of the last two tensoral indices of q 
with the (two) indices of [Ardk)IT. 

Now, given approximations W-l) and T(k-l), we assume that the succeeding 
pair T(k) and f(k), for k = 1,2, . .., are governed by 

- - 

- - 
V,, T ( k )  = - a-lVl. T(k-11, V,.%) = - a-lVl .T(k-Q, (2.17) 

which are derived from (2.8). As suggested by (2.15) and (2.1), we assume that 
&I’dk’ is related to the stress field by 

q(k-1): [A?,$k’]T = + A$k)l, (2.18) 
where 

AjjW = jjW - j j ( k - l ) ,  AT(kl = -F(k-l). 

On combining (2.17) and (2.18), one obtains, finally, a set of inhomogeneous 

V,.[ij:V,fi’] = V0jj‘+6, V o . V  = q, (2.19) 

linear equations for T(k) and $k) 
- - 

with - V’ 3 AT(k), j j ’  a-lAjj(k), 9 ij(k-l), 

and with the inhomogeneous terms determined from the lower-level approxi- 
mations by 

- - - -  
b b(k-1) = - a-1[V0 + a-lv,]. T(k-1) E - a-2V. T(k-1) 

- - 1 (2.20) 
and g q(k-1) = - a-l[v, + a - 1 ~ ~ .  ~ ( k - 1 )  - a - 2 ~ .  v(k-1) J 

for k = 1,2, . .. . The governing equations for k = 0 are to be obtained from 
equations like (2.9) and (2.10). The exact form of these equations will depend 
crucially on the fluid rheology, a matter to be reconsidered in a simpler version 
of the problem to follow. It is also necessary to place certain rheological restric- 
tions on the derivatives ?lijkl  in relations like (2.15), to ensure that the stress 
perturbations arising from the dominant velocity gradient are in turn dominant, 
and we shall henceforth assume that such restrictions are satisfied by our fluid. 

Then we require the near-field approximation at any level k = 0, 1,2, . . . , to 
satisfy the boundary conditions (2.2) at the particle surface and to match in 
an appropriately defined way with a proper far-field approximation. As we 
shall see below, some simplification of this otherwise complex type of problem 
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is possible in the case of an axisymmetric flow, when the zeroth-order flow field 
v(0) is a rectilinear-shearing or ‘viscometric’ flow. In  this case, both the operator 
V, and the tensor q can be replaced by simple scalar forms. 

- 

2.2. The far-field approximation 

I n  the ‘far-field’, r2+z2  = O(1) for a-too, we assume that the flow can be repre- 
sented as a hierarchy of perturbations to the basic or ‘unperturbed’ extensiond 
flow v(O) in (1.3). Thus, by means of a relation analogous to (2.15), we take 

(2.21) S(k) = S(k-1) + q(k-1): [Ar(k)]T, 

which involves the tensor appearing in (2.15), now evaluated a t  Fk--l). In  this 
way, one obtains a set of field equations analogous to (2.20): 

with, now, 
V.[q:Vv’] = Vp’+b, V.V‘  = 0, (2.22) 

V’ AVW, p’ ApW, q @-I), b b(k-1) = - V .  T(k-1). 

In  the case of the first-order approximation (k = I) ,  we note that equation 
(2.22) for v(l) has b(O) = 0 and, hence, is homogeneous. Here we suppose the basic 
flow in the far field to be characterized by a uniform state of stress, 

T(O) = S(F0)) -p(O)I, p(O) = constant, (2.23) 

as well as a constant tensor 

with r(0) = izia-i(irir+ieie) 

= rl(r(o)), (2.24) 

representing the basic far-field gradient of (I .3). 
Hence the field equations for k = 1 represent the motion of a homogeneous 

anisotropic medium and, as such, are amenable to certain solution methods from 
the theory of anisotropic elasticity. In  particular, because of the axial symmetry 
of the unperturbed flow, the tensor qf0) is endowed with the symmetry of a trans- 
versely isotropic medium, which will permit us presently to construct the first- 
order perturbation to the far-field flow due to the body. 

2.3. The axisymrnetric case 

The near-field form of the velocity field $O)in (2.1 1) suggests that the asymptotic 
form of the near-field flow can provisionally be taken as purely axial with 

3 0 )  = @)(a; E, z )  i, + o( 1) (2.25) 

for a-tco, where 8)) is O(1). With (2.6), this implies an asymptotic velocity 
gradient of the form 

(2.26) 

To terms o( 1) relative to the leading term, this represents a rectilinear shearing 
flow and suggests that the near-field flow is ‘ quasi-viscometric ’, provided that 
the rheological function S in (2.1) is such that the terms o(1) have negligible 
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influence on the stress, for a+ m. However, the latter condition does not ensure 
the validity of (2.25), for, as .discussed in the earlier analysis (I), there still 
remains the well-known incompatibility of general rectilinear flows, other than 
planar or axisymmetric, with the equations of motion (2.10) (cf. Green & Rivlin 
1956; Ericksen 1968; Dodson, Townsend & Walters 1974, who give other 
references). Therefore, to avoid the possibility of transverse motions of magnitude 
O( 1) for a -+ coy while retaining an element of generality in our rheological assump- 
tions, we shall henceforth limit our discussion to the axisymmetric situation. I n  
this case, (2.25) and (2.26) can be retained, with of course E replaced by F in (2.26) 
and a/aO taken as zero in (2.26) and elsewhere as appropriate. 

At this point, it  is worthwhile to reconsider briefly the complete flow problem, 
since its axisymmetric version can be written out in a more explicit form, 
without resorting to any of the approximations employed in our slender-body 
analysis. Thus, for the axisymmetric problem, the velocity field is given by 

v = u(r, z )  i, + v(r,  z )  i,, (2.27) 

where u and v denote the axial and radial components respectively. Therefore 
the velocity gradient is 

I' = ezi,i, + yzizi, + yrir i, + e, i,i, + e,isie, (2.28) 

where, for brevity, we employ the notation 

e, = rze = au/az, yZ = r,, = au/ar, 

7,. = rrz = avlaz, e, = rrr = av/ar, e, = Fee = v/r 

for the components of the velocity gradient. The e's are of course connected by 
the continuity equation 

(2.29) e,+e,+e, = V.v = -+--(rv) = 0. 

As shown in the appendix, for a quasi-steady velocity gradient of the form 
(2.28), the rheological function S is given, up to an additive isotropic pressure, 

(2.30) S = (i,.iz+ izi,)t+inizsl+irirs2, 

where t ,  s1 and s2 are functions of the velocity gradients in (2.28). Acmrdingly, 
the stresses are given as functions of position by 

T(r , z )  = T,, 

au i a 
az r ar 

by 

(2.31) I f Sr,  = t(yz, Yr, ez, er), 
........... vZ(r, Z) = T, - To, F S,, = ~1(. ) 

and ur(r,z) T,-T,, S, = s2( ......... ...). 
Certain salient properties of these rheological functions are discussed in the 

appendix, where, also, S(r) is expressed as an explicit tensor function of r. In  
the following analysis it will be useful to keep in mind certain properties to be 
attributed to the fluid behaviour in the limit of the basic far-field flow, where 
y,+ 0, y,+ 0, e, 4 1 and er+ - 8, and for which 

and (2.32) 
at/& -+ 0, aslay -+ 0. 

t + O ,  s,+constant > 0, 
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The last two relations, in which s, y and e refer to any of the variables denoted by 
these letters in (2.28) and (2.31), require a degree of smoothness in therheological 
behaviour, as mentioned in the appendix. 

For the present purposes, the representations (2.30)-(2.32) suffice and the 
stress equations (1.2 a) take on the well-known, simple form 

i a  ars aP 
r ar 

i a  a7 ap - - (rr,.) + - = - 
r ar ax ar, 

-- (9.7) + - = z, 
a2 

(2.33) 

which, together with (2.28)-(2.31), constitute a set of second-order nonlinear 
differential equations for u, v and p .  The boundary condition at the (axisym- 
metric) particle surface now assumes the elementary form 

u(r,z) = v(r,z) = 0 for r = P(z)/a, (2.34) 

where P(z)/a denotes the radius of revolution of the surface, and P(z) and its z 
derivatives are assumed to be O(1) for 121 < 1. 

Returning to the slender-body analysis, we write (2.17) as 

(2.35a) 

(2.353) 

( 2 . 3 5 ~ )  

for k = 0,1 ,2 ,  ..., where the right-hand sides of the first two equations are to 
be set equal to zero in the zeroth-order approximation, k = 0. 

For (2.35c), we have chosen a form which is at variance with the general 
approximation scheme (2.17)-(2.19) and (2.20) in which there may exist non- 
trivial solutions to V,. v = 0 that do not involve sources or sinks of mass. With 
the present one-dimensional form for V,, such is not the case, and our choice 
of the form of ( 2 . 3 5 ~ )  will provide for a well-defined zeroth approximation, 
thereby eliminating certain needless algebraic iterations. Also, i t  will facilitate 
the later discussion of matching with the far field, where terms like 

~ ( 0 )  = -+r = -F/2a, 

which are O(l/a) in the near field, become O(1). 

the elementary expression (cf. I) 
Now, (2.35a) can be integrated immediately and, for the case k = 0, yields 

(2.36) 

where +(O) is the (as yet unknown) shear stress a t  the particle surface P = P(z). 
When combined with the continuity equation ( 2 . 3 5 ~ )  and the rheological 

- .(O)(a; F, 2 )  = +@)(a; 2 )  B(z)/F, 
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equation (2 .31)  for t ,  (2 .36)  gives a set of implicit partial differential equations 
in u and v of the form 

(2 .37)  

involving a as a parameter. 
Obviously, the form of the function t will govern the asymptotic relation 

between u, v and 7 for a+co, and we desire asymptotic solutions U(O) and V(O) 

to these equations whose asymptotic matching with the far field will serve to 
determine the form of .i(O) in (2 .36) .  Thus, instead of (2 .37) ,  we require of the 
zeroth-order approximations .f(O), TJo) and V(0) that, for fixed but otherwise arbi- 
trary values of F and z, 

lim [+(a; F, z )  - iF] = 0, (2 .38)  
a+m 

where 

(2 .39)  

which we expect generally to yield a differential equation, involving go), U(0) 

and ?Jo). 
We further require that U(O) and V(O) satisfy the boundary condition (2 .34)  and, 

whenever the form of the rheological equation permits, that they match asymp- 
totically for F-t co with the components of the basic far-field velocity v(O). For 
arbitrary rheological models the latter condition is by no means ensured and, 
indeed, is not satisfied by a Newtonian fluid. 

On the other hand, whenever the required zeroth-order velocities exist, then 
we shall have, by means of the further rheological relations (2 .31) ,  expressions 

(2.40) 

for the stresses 8:) and 5io) in (2 .35) .  Thus, by (2 .35)  and (2 .40) ,  one obtains for 
the zeroth-order pressure field 

p(0) = 340) +l S J O ) ~  + a function of z. (2 .41)  
r 

Having established, whenever feasible, a set of zeroth-order a.pproxima.tions 
for P), @), 8 0 )  and $O), one could in principle proceed to the calculation of 
higher-order approximations. Thus (2 .40)  and ( 2 . 3 5 ~ )  with k = 1 give an im- 
mediate integral for F):  

- of the form 040) = $0) s(yp, p, $3, p) 

(2.42) 

Here we have chosen the additive homogeneous solution €or to be the identical 
with ?(O) of (2 .36) .  This condition, together with the matching of (2 .42)  to the 
far field in $ 3, provides in effect the definition of ?(OJ. 

As regards the first-order velocity and pressure fields, we write, in the spirit 
of the scheme outlined in $2.1, 

(2 .43)  

obtaining then from the appropriate form of (2 .15)  

- 
$1) = VCO) + AT(l), 

a(Au(i))/ar = (~(1) - P)) (a ai(o)/ayz)-l, (2.44) 
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where i (0 )  and 8(o)/8yz denote the values of t and its derivative at v = F O )  and 
$1) is given by (2.42). The relevant equations for jP) and 8l) are then to be ob- 
tained from (2.353, c), with k = i, together with (2.36). 

However, our intention here is not to investigate fully the nature of such 
higher-order terms, so that the asymptotic forms of (2.41)-(2.44) will suffice for 
the matching of velocity and stress at T = co to be reconsidered in Q 3. 

For certain types of rheology, in particular for a Newtonian fluid, a zeroth- 
order solution satisfying the matching requirement laid down above will not be 
possible. By way of contrast, we consider now a certain class of non-Newtonian 
fluids whose shear behaviour allows for solutions which are O( 1) in the near field 
for a+ co but which display a weak body influence in the far field. 

2.4. Sheardominded behviour 

In  I ,  the near-field stress was taken to be viscometric in character for a+co, 
which implies that the shear-stress function t in (2.31) behaves like 

W S ,  yr, ez, er) - W,) = t(?W O,O,O) (2.45) 

for yz-+co with yr, e, and e, fixed, where T denotes the viscometric shear-stress 
function. As can be gathered from the discussion in the appendix, the behapiour 
(2.45) must be regarded as special for it implies a special type of functional de- 
pendence of t on the scalar invariants formed from the velocity gradients in 
(2.28), a dependence which might be termed ‘shear-dominated’ as indicated in 
the above heading. If such behaviour is assumed, and if it  is further assumed 
that the fluid exhibits strong ‘shear thinning ’, with (apparent viscosity) 

T(y)/y-+O for y+w, (2.46) 

then, as also shown in the analysis just referred to, it  is possible to find asymptotic 
solutions 3 0 )  of the kind discussed in the preceding subsection. 

To establish this more carefully, and to provide a result which may be easily 
comprehended, let us further assume (i) an invertible function T ( y ) ,  with 
y = G(T) denoting the inverse for 7 = T ( y ) ,  and (ii) the limiting Newtonian 
behaviour at small shear rates : 

T(y )+y  or G(T)-+T for y or 7+0, (2.47) 

where a dimensional scaling like that of (2.3) is implied. Then, because of (2.46), 
(2.38) is satisfied by taking 

aa;ii;co)/ai. 7;) = G(%O)) - (2.48) 

Hence, on integration and changing the variable from F to ?(O) according to 
(2.36), we have 

cqa; T, 2) = - 1 hWd7, (2.49) 
+coy +w 

a +a) 

where 

and ~ ( 0 )  is given by (2.36). The device of subtracting the argument 7 from a(7) 
in (2.48) and (2.49) serva to avoid a logarithmic ‘Newtonian’ singularity, 

h(7) = (Cr(7) - 
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which represents the shear behaviour of the near-field rather than that required 
for matching of both velocity and stress in the far field. 

In  9 3, we shall see that it is precisely the first-order perturbation A@, governed 
by the asymptotic form of (2.44), which serves to accomplish the matching. 
Furthermore, the very form of (2.49) serves to emphasize that our 'zeroth-order' 
velocity in the near field owes its existence to departures from Newtonian 
behaviour. While the above device is doubtless not the only way of achieving the 
desired result, just as the functional form (2.48) for 7io'is not the only one possible, 
it nevertheless produces a zeroth-order approximation that appears to have the 
desired properties. 

In  particular, the requirement that (2.49) match for i:+m with the far-field 
velocity do) = z becomes 

(2.50) 

which provides an implicit equation for +(O)(a; z ) ,  a function which is determined 
by the form of T ( y )  and which, incidentally, is seen to depend on the single 
variable az/P(z). 

For example, let us employ a minor but appropriate modification of a well- 
known empiricism, the so-called ' power-law ' fluid, by taking 

c(7) = (m- 1),&m+7 (7 > o), (2.51) 

where /3 and m are constants with P(m- 1) 2 0 and m > 1 for shear-thinning 
behaviour, while m = 1 in the limit of Newtonian behaviour. Then (2.50) and 
(2.49) become 

@)(a; z )  = [alzl//3P(z)]l/" sgn z 
and (2.62) 1 - 

u") = z[l - (P/i:)"-l] 

for m > 1. These equations are but slight variations of equations presented 
earlier in I. It can be seen that the postulate (2.45) and the condition at i: = cx) 
are both satisfied for m > 1 but not for m = 1. 

For a more general viscometric behaviour, the correspondingly more general 
form (2.49) applies, although, strictly speaking, we must consider it limited to 
the shear-dominated behaviour (2.45). This relation might nevertheless serve in 
several instances to provide a useful zeroth-order approximation ii@) in the 
near field since the flow must be exactly of the simple-shearing type at the particle 
surface, where e, = e, = y, = 0, as with any incompressible flow near a no-slip 
boundary, and whatever the value of the parameter a. 

We consider next the &st-order perturbation in the far field and its matching 
with the near field. This will provide, in the form of equation (3.47), a more 
complete asymptotic formula than (2.50) and will highlight the non-uniform 
nature of representations like (2.51) and (2.52). 
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3. First-order perturbation in the far field and matching with the near 
field 

3.1. Solution by potential functions 

As pointed out in $2.2, the governing equations (2.21) for the first-order approxi- 
mation in the far field have a form representative of a general anisotropic medium 
with a constant material tensor q ( O )  relating stress to velocity gradient. As such, 
they are similar in form to those governing small strains superimposed on large 
deformations in elastic bodies, as discussed extensively in the treatise of Green 
& Zerna 1954, hereafter referred to as G & Z). This important fact permits us to 
adopt certain methods from solid mechanics to construct a solution to the  
problem at hand. 

First of all, we note that, in the present context, the tensor $0) must possess 
the symmetry of the basic uniaxial extension Po) in (1.3) and (2.23), which is 
that associated with 'transverse isotropy' (Love 1944, pp. 161 ff., G & Z, pp. 
130 ff.). As a consequence, the stresses are linearly related to the velocity gra- 
dients according to the following array of constant coefficients, which of course 
determines the form of q@): 

Here the E's and R's denote, respectively, the components (in the z, r,  8 system 
in $2) of the symmetric rate-of-deformation tensor E and the antisymmetric 
vorticity tensor 8 : 

in which we recall that I' is to be interpreted, in the notation of $2.2, as  the per- 
turbation AI'(l) to the basic far-field gradient r(O). Accordingly, we recall that the 
explicit dependence of the stress in (3.1) on vorticity refers to the tensor A W ) ,  
thereby implying a proper material response to superposed rotation. 

I n  (3.1) we have adopted a deviatoric or traceless form of the relation given 
by G & Z (pp. 130 ff.), as is appropriate for an incompressible medium, where 
the stresses are defined onlyup to an arbitraryisotropic pressure. In  the appendix, 
the relation of the coefficients in (3.1) to the axisymmetric rheological functions 
t ,  s1 and s2 in (2.30) is briefly discussed. 

We shall be mainly concerned with the case of axisymmetric flows. This 
symmetry admits a class of solutions derivable from a 'potential' (G & Z, pp. 
130 ff., pp. 182 ff.), say d ( k ,  r ,z) ,  as 

E = ET = g ( r + r T ) ,  SL = -a* = i ( r - r T ) ,  (3.2) 
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in which case, to satisfy (2 .22) ,  one must require that the pressure p and the 
potential function q5 satisfy 

and 
p = k[4p‘ - 2p“ - (p - v) k - (p + v)] a2q5/az2 + constant (3 .4)  

where k is equal to one of the two roots, sa.y k,, of the characteristic equation 

(p- Y) k2+  ~ ( , u ” + P -  3 ~ ‘ )  k +  (p+ V )  = 0. (3 .6)  

We shall not bother to record here the corresponding formulae, in terms of q5, 
for the velocity gradients and the stresses, which follow from (3 .3) ,  (3 .1)  and 
(3.4) and which can also be deduced from formulae given by G & Z (pp. 133 and 
182). 

For a linear isotropic solid material or a very special simple fluid (a ‘Reiner- 
Rivlin’ or ‘Stokesian fluid’; see the appendix) one may set v = 0, in which case 

k + = b + ( b 2 - l ) * ,  k - =  k T l = b - ( b z - l ) * ,  

where b = (3p ’ - ,u -p”) /p .  Then, in the fully degenerate case of an isotropic 
(Hookean) solid or (Newtonian) fluid, with p” = p” = ,u, these reduce further to 

k+ = k- = b = 1. (3 .7)  

In  the non-degenerate case, a general solution of the form (3 .3 )  can (as a slight 

(3 .8a,  b )  

variation on G & Z) be expressed as 

4 = q5+ - q 5 - 7  v = a($+ - q5-p 
and 

where, with subscripts f taken separately, 

( 3 . 8 ~ )  

and the functions q5*(r, z )  represent general harmonic functions of r a.nd z* satis- 
fying the axisymmetric Laplace equation 

V2q5 = -- r- +- q5&=0. :J $1 (3.10) 

The pressure field is accordingly to be obtained from (3 .4)  by means of linear 
combinations like those in (3 .8) .  

Now, as an observation that is perhaps unique to the present work, we note 
that, by what is essentially ‘ D’Alembert’s method’ for ordinary differential 
equations (see, for example, Ince 1956, pp. 136 ff.), one can construct certain 
solutions to (2 .22)  which remain valid in the isotropic limit (3 .7) .  Thus, to general 
solutions of the form (3 .8) ,  we merely add a solution in which q5* are chosen to 
be the same harmonic function; that is, we let 

q5* = W , z * ) / A ,  (3.11) 
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where A = A(k+, k-), independent of r and z, is a function of k, such that A +- 0 
for k+ 3 k- + 1 and the limit 

X(r, z )  = lim [@(r, z+) - @(r, z - ) ] /A (3.12) 

exists. Then, in view of the fact that 

V”+V”-($+-$-) = VV”-VV”+($,-$-) = 0 (3.13) 

for distinct roots k,, one has formally in the limit k+ + k- -+ 1, when VV”+ + V? -+ V2, 
that the limit function x is biharmonic: 

v4x = 0. 
To be definite here, we take 

A k+ - k-, 
so that, by (3.12), 

The associated velocity fields are, in the same limit, given by (3.8) as 

x = - &za@(r, z)/az. 

a 2 0  v = - =  ax -&- 
ar a r w  

(3.14) 

(3.15) 

(3.16) 

(3.17) 

from which we recover a well-known classical representation of solutions for 
the isotropic problem (cf. Lamb 1945, p. 604; or Happel & Brenner 1965, p. 
221). We note in passing that the above method of deriving solutions for isotropic 
media, as the limit of ‘potential’ solutions for anisotropic media, is by no means 
restricted to the axisymmetric motions and incompressible media considered 
here. 

For the present analysis, the axisymmetric forms (3.8) and the corresponding 
isotropic limits in (3.17) will suffice. Furthermore, we are mainly concerned here 
with special potential solutions, of a kind that will satisfy (3.2) and match asymp- 
totically for r +O with the outer limit of the near-field solutions. 

As in the corresponding Newtonian or Hookean problem (Cox 1970; Batchelor 
1970b; Russell & Acrivos 1972), it  is our hypothesis here that the far-field per- 
turbations Ap(1) and Ad1) can be represented by a line-force singularity along the 
body axis r = 0, IzI < I. Hence, by superposition, we can construct the appro- 
priate potential function and related fields from a point-force singularity. 

3.2. The coaxial point-force and line -force singularities 

The construction of fundamental singular solutions for linear anisotropic media 
appears to be an exceedingly difficult problem of classical continuum mechanics, 
even though i t  is solved in principle by the Volterra-Synge contour-integral 
representation (Synge 1957, p. 411). In  the simplest non-trivial case, which is 
the transversely isotropic medium of interest here, Willis (1965) has reduced this 
representation to purely algebraic terms, but the resulting expressions are still 
of a rather formidable comp1exity.t Hence, for a coaxial force collinear with the 

Thus the present author was unable, with a reasonable expenditure of effort, to reduce 
the expressions of Willis to the forms given here for the axisymmetric case. 
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axis of material symmetry, we shall employ the method of potential solutions 
discussed in the preceding subsection to construct a simpler expression. In  
particular, letting 

R = ~ ( r , z )  = 1x1 = (rZ+z+ (3.18) 

henceforth denote the distance from the origin r = z = 0, we assert that the 
solution which corresponds to a unit point force a.cting at the origin in the + z  
direction is obtained from (3.8), (3.11) and (3.15) by taking? 

and that the velocity fields, derived from i t  by means of (3.8), are then 

and 

(3.19) 

(3.20) 

(3.21) 

where R*(r, x )  = R(r, z*) with z* defined as in (3.9). By means of the stress for- 
mulae to be presented below as (3.25)-(3.27), this assertion can be verified in 
the standard way, by derivation of the traction on an arbitrary closed surface 
enclosing the origin (which is most conveniently chosen here to be a circular 
cylinder with axis on r = 0). Also, it  can be verified that (3.20) and (3.21) have 
the proper isotropic limits, which are also given directly by (3.17) and (3.19). 

By means of the fundamental solutions (3.19)-(3.21) and the superposition 
principle one can, of course, obtain the velocity and stress fields associated with 
an axial distribution of force d P ( z )  on r = 0, which, when differentiable as will 
be assumed here, can be written as 

dF(x) = f(z) dz, with f(z) = dF(z) /dz .  (3.22) 

Thus, for a line distribution confined to IzI < 1, the associated potential function 
is obtained in terms of (3.19) from (3.8) and 

(3.23) 

The velocity fields are then given by (3.8) or, alternatively, in terms of (3.20) 
and (3.21), by formulae like 

We record here the formulae for the pressure (3.4) and the stress components 
(3.1) corresponding to a coaxial point force at the origin: 

I> = P(r,z) ,  Tij = &j(r,z)-P(r,z)6Zj, (3.25) 

t It can be seen that (3.19) is a superposition of the potential functions In (R f z)  of 
isotropic elasticity associated with a so-called 'line of dilatation' (Love 1944, p. 188) along 
r = 0 , z  5 0 .  

I 3  FLM 78 



194 J .  D.  Goddard 

with 

(3.26) 

1 
i 

P = -A-'[B + J +-B-J-I, 

- (Xm + X,,,.), Xzz = - (4 ,~ ' -  2,~") A-l[J+ - J-1, 
C, = A-1{2,~"r-~[H+ - K ]  + ~,u'[J+ - J-I}, 

= Xrz = - (,u - v) rA-l[k$ K+ - kk K-1, 
where 

A = 4 n ( , ~ - ~ ) ( k + - k - ) ,  B, = ( , U + V ) + [ C U - - ) - ~ P ' I ~ * ,  
(3,27) 

H& = zf/R,, J& = z,/R;, KTt = 1/R: 

Superposition formulae of the type (3.24) will thus involve integrals having 
and R, are defined as in (3.20)-(3.21). 

the general form 

with r, = k t r  and R defined by (3.9). The singular behaviour of this type of 
integral for r-f 0 has been studied extensively in connexion with various slender- 
body theories (e.g. by Fraenkel 1969; Cox 1970, 1971; Tillet 1970; Russel & 
Acrivos 1972, to name but a few).? For the terms of main interest here, we have 
that 

and 

dz* N - 2f(z) lnr, +l f(z*) s -1R(r,z-z*) 

1" fk*) dz* - (2/rZ)f(z) 
-1 R ( r ,  z - z* )  

(3.29) 

(3.30) 

(3.31) 

for r -f 0 with 0 < r2 < 1 - x 2  (see Russel & Acrivos 1972). In  the present context, 
the force distribution, denoted byf(z) in (3.22) and (3.29)-(3.31), is also a func- 
tion of a, sayf(a; x ) ,  whose form is to be ascertained from the following consider- 
ations. 

3.3. Matching with the nearJie1d 

Here we wish to show that the type of first-order approximation constructed 
above in $3.2 for the far field can be joined asymptotically with those derived 
from the first-order approximations for the near field developed in $2.3. 

Considering first the shear-stress terms T ,  we obtain, by means of the function 
Xrn in (3.26) and the asymptotic form (3.30), the far-field relation 

4) 3 Ti:) N -f(a;z)/2m for r+O. (3.32) 

On the other hand, under the assumption that the integral in (2.41) is of a 
smaller order than the term T(O)  for a -f co, we have for the near-field stress that 

Ttl)  N p)  . i ( O ) ( a ;  z )  P(z)/i: (3.33) 

t It is interesting to observe that the type of potential solutions arising here for the 
anisotropic medium serve to establish a certain kinship to other, diverse physical applica- 
tions of slender-body analyses, a kinship which is somewhat obscured by the specialization 
to isotropic media. 
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for a +- co at b e d  p .  Then, through the matching of the fundamental singularity 
in (3.32) and (3.33), the axial force distribution is given by 

f (a; 2) = - 2na-1'pco)(a; 2) a@), (3.34) 

which is the elementary force balance on the particle surface proposed in I. 
Next we show that (3.34) is sufficient to ensure that the corresponding axial 

velocities also match. The appropriate far-field form is obtained from (3.20), 
(3.24) and (3.29) as 

(3.35) 

The near-field perturbation A P  is to be obtained from (2.43). Then, making 
use of (3.33) and (3.34) together with rheological relations of the form 

t(O) + 0, 8tco)/8y, +- ,a - Y for 7 --f co, 

obtained from (2.32) and equations (A 9)-(A 12) of the appendix, one can readily 
verify that (3.35) indeed matches with AT$). 

Incidentally, we note that, even if there exists no zeroth-order near-field flow 
having the requisite properties, the equation (2.44) for = A;iZcl) can still 
remain valid, upon setting Go) = 0 and iY0) z 0 in both (2.42) and (2.44). Thus, for 
example, we recall that one fhds for the Newtonian case that 

for 7 +- co. and hence that 

_ -  2n f - -+1+0(&)]. h a  

Therefore, in this case, the basic far-field velocity do) = z is matched to the 
3rd-order near-field velocity. 

I n  any event, we have confirmed that the matching of shear stress implies the 
matching of axial velocity and conversely. At the same time, we have established 
in (3.34) the order-of-magnitude relation 

f (a; z )  = O{P)(a; z)/a} for a --f coy (3.36) 

which also serves as a criterion for the validity of our far-field perturbation 
analysis. In  particular, both in the preceding analysis and in that to follow, we 
must require that f = O( l/ln a) for a +- 00. 

While the remaining stresses are not as easily reckoned with, we c m  never- 
theless establish a result similar in essence to that obtained above, namely that 
the matching of radial velocity components implies the matching of the radial 
stress components. 

First, we note that to the order of terms considered here the asymptotic form 
of the far-field perturbation Ad1) for r+O can readily be obtained from the 
continuity equation and the relation (3.35) for Ad1) as 

Ad1) - [2n(p - v)]" f ' r  In r + O(r),  (3.37) 

where f' denotes the z derivative off. This agrees asymptotically with the form 
of deduced from (2.35) and (2.44). 

13-2 
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Next, we note that, with the stress convention of $ 2  ( p  E -Too), (2.363) can 
be rearranged to read 

p(1) = g(l)-p(l) = - gal)z-id (.i(o)@)In?+a function ofz. (3.38) 
r adz 

To show that this matches appropriately with the far-field stress TS), we recall 
that the rheological term in the integrand is defined by 

f f 2  

Accordingly, we employ the corresponding far-field expression 

a U a )  avcU aucl) av( l )  
s p  = s2 (T - - -) 

9 a Z  a Z  * ar 
to cast (3.38) into the form 

(3.39) 

(3.40) 

I n  this way, we expect the first integral in (3.41) to converge for ?+a provided 
that V(1) -+ Vcl). It remains then to show, with account taken of the other terms in 
(3.41), that the expression given will match properly with the far-field stress. 

Now we note that the arguments of s2 in (3.40) are given asymptotically for 
small r bv 

where c E 1/27l(p - v). If we assume that f and its z derivatives are all O( l/ln a) 
as a+m, then we may consider these as o(1) perturbations to the far-field 
gradients. For r = O(l ) ,  this is aIready assumed tacitly in the perturbation ana- 
lysis of $ 2.2, and it is furthermore necessary for the continuation into the near field 
r 3 1;1. = O(l/a) assumed here for the purposes of matching. 

With that stated, we take sal), as in (3.1), to be 

which, on substitution into the second integral of (3.41), gives 

It remains, finally, to compare the asymptotic form of the far-field stress Tg) 
with (3.44). By means of the relations (3.25)-(3.27), one sees that the superposi- 
tion integral for TZ) is determined by 

(3.46) Z, - P = A-1{2p"r-2[H+ - H-] + [C, J+ - C- J-I}, 
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where C, = Zp’+B,, in the notation of (3.27). However, in the same notation, 
the corresponding form of (3.21) for Ad1) reads 

V(r, 2) = - (Ar)-l [H+ - K],  (3.46) 

whence it may be seen immediately that the integral representation of the first 
term in (3.49, involving H,, corresponds exactly to that of the term Av(l)/r 
in (3.44). The remaining terms in (3.45), involving J*, may readily be found 
by means of the relation (3.31) to match asymptotically with the third term in 
(3.44), which of course behaves like lnr  for r+O. Therefore, apart from the 
integral shown there and other terms which are independent of r, all of which 
are of a smaller order for r+O than those just considered, the expression (3.44) 
matches with the far-field stress T$), as was to be shown. 

To carry the analysis beyond our present discussion of the asymptotic be- 
haviour of the first-order inner fields for large F, we should obviously require a 
more compbte specification of the shear-stress function t in (2.44). However, 
such a detailed rheological analysis is beyond the intended scope of the present 
work, in which we are mainly concerned with the general aspects of the ‘zeroth- 
order’ stress field. 

Thus, to conclude this section we note that a combined matching of (2.49) 
and the asymptotic form of A@) from (2.44) with (3.35)gives,in addition to (3.34) 
and in lieu of (2.50), the following equation for the particle surface stress .pCo): 

1 

P-” 
h(7) d7 +-ha + O(1) 

for a -+ 00, where 
6 = azp. 

(3.47) 

(3.48) 

In  contrast to (2.50), this equation remains valid in the limit of Newtonian shear 
behaviour, h = 0. Moreover, for h + 0 one concludes that it has the asymptotic 
solution 

+(@= +(<) 1+0 %la (3.49) ( (d5 11 
for a-+00, in which 6(6) denotes the solution to (2.50). The forms of (3.47)-(3.49) 
suggest that the solution +(<) will be non-uniformly valid for z + 0, where the 
assumption of rectilinear shear fails in a region z = O(a-l). This is readily seen, 
for example, in the case of the power-law behaviour (2.51) and (2.52). However, 
in this case one also encounters fractional powers of z, which leads to singularities 
at z = 0 in the higher-order terms of expansions like those of (3.29)-(3.31), as 
is shown by the expressions given for these elsewhere, e.g. by Russel & Acrivos 
(1972). 

The effects of such singularities as well as those associated with particle 
shape, such as bluntness of the particle ends, would doubtless require careful 
consideration in an analysis of higher-order terms. Barring singularities of 
particle shape, we expect (3.47) to provide a valid estimate for +(O) for the shean 
dominated rheology postulated in 3 2.4 above. Then, for shear-thinning fluids, 
(3.49) should provide a valid asymptotic estimate for the quantity of primary 
interest here, the particle contribution to stress in a suspension. The latter is 
given by (3.34) and a further relation, (4.11), to be derived next. 
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I n  closing bere, we note that at the level of approximation implied by (3.49) 
one needs only information about the simple-shear behaviour of the fluid. An 
analysis of higher-order terms would, however, require more complex rheological 
data, such as the shear modulus p-v in (3.47), for perturbations to the basic 
flows. 

4. Tensile behaviour of the dilute suspension 
The theory of dilute particle suspensions has been thoroughly discussed in 

the recent literature (Batchelor 1 9 7 0 ~ ;  Russel & Acrivos 1972), and we shall 
employ tbe accepted volume averages for the definition of bulk or macroscopic 
properties : 

(r) = +/// V rdV,  (T) = +//j-vTdv, (4.11, (4.2) 

which axe understood to be taken over both the suspending medium or continuous 
phase and the particulate phase, with V denoting a representative volume of 
suspension subject to the macroscopic gradient (I?). In  general, V must be large 
enough to contain a statistically representative collection of particles and also 
large compared with the typical particle dimensions. Since the aria-lyses referred 
to above have all dealt with rheologically linear suspending media, i t  will be 
necessary in the present work to make certain modifications to the usual methods 
of calculating volume averages. 

To do this, we observe that, given a (sufficiently differentiable) divergence-free 
tensor field Y, 

V . Y  = 0, (4.3) 

we have, by the divergence theorem, that 

where A,  denotes a (sufficiently smooth) closed surface bounding a finite volume 
V, and having unit outward normal n(x). Since the stress tensor is divergence- 
free in the type of problem considered here, we can, following Batchelor (1970a), 
make use of (4.4) to put (4.2) into the form 

where ZA, denotes any set of closed surfaces A$ each lying in the continuous 
phase and enclosing a volume that contains exactly one particle (the ith), 
and Xq denotes the set of such volumes. 

By choosing the surfaces A, to coincide with the particle surfaces and recalling 
that a rheological equation of the form (2.1) applies in the fluid region, one can 
reduce (4.6) to an expression involving integrals over a typical particle surface 
plus a volume average of S(r) -PI over the region occupied by the fluid. In  the 
context of a slender-body analysis the surface integral could be evaluated from 
the appropriate near-field approximation. However, with the present type of 
rheology, as opposed to the usual linear cases, the volume average of the non- 
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linear function S cannot be directly expressed in terms of the corresponding 
volume average of its argument I’. Thus the integral must be evaluated from a 
detailed knowledge of the flow field (cf. I). Generally, this might be carried out by 
integration of an appropriate approximation for the velocity field based, say, 
on a composite of the near-field and far-field approximations. However, it appears 
simpler, for the order of slender-body approximation to be considered here, to 
employ a modification of the technique discussed by Batchelor ( 1 9 7 0 ~ ~ ) ~  which 
ultimately makes use of the far-field approximation. 

Thus we note that the basic stress T(0)  and the first-order approximation in the 
far field T(l) are both divergence-free, so that (4.5) applies to these quantities and, 
as well, to the first-order perturbation 

(4.6) 
where we employ notation of the form (2.22). Then we may further employ an 
equation of the form (4.6) for each term on the right-hand side of the identity 

T’ ATtU TCU - TCO), 

(T - T(O)) = (T’) + (T - T“) 
to evaluate (T - T(0)). 

(4.7) 

Considering the first term, we recall that T’ is given by the linear rheological 
equation 

where, as in (4.6), 

and 
p i  ~ ~ ( 1 )  p‘l‘-p(o’j 

denote first-order perturbations and q(0) denotes the material tensor (2.24). 
Finally, and exactly as has been done for the linear isotropic case, we can use 
the divergence theorem and the relation (4.8) and replace the surface integral in 
(4.5) by that for a single representative particle to put (4.6) into the form appro- 
priate to a hypothetical anisotropic continuum: 

T‘ = +‘):VV’-~‘[, (4.8) 

1 (4.9) 

V’ A$U $1) - $0) 

where 

(4.10) 

Here A,  denotes an arbitrary surface enclosing the sole representative particle, 
NfY denotes the number of particles per unit volume, while the pressure (p)’ 
can be expressed in term8 of the volume-average pressure over the fluid. 

Now, the surface integral in (4.10), which must be independent of the particular 
bounding surface A,, exactly as with other linear continua, is identical with the 
force doublet or ‘stresslet’ due to the presence of the particle. Thus, since T‘, 
we recall, was expressly constructed as the stress field due to a line singularity, 
we may immediately write for the surface integral in (4.10) 

(4.11) 

Heref is the axial force distribution of (3.32), and the integral moment represents 
the magnitude of the effective force doublet (cf. Batchelor 1970a). 
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It remains finally to consider the term (T- T(l)) in (4.7). As pointed out there, 
this term can also be expressed in the form ( 4 4 ,  involving both a surface integral 
and a volume integral. By choosing the surface A,  to be far enough removed 
from the particle surface for the far-field expansion to become valid, we expect 
the integrand of both the surface and the volume integrals to be approximated 

by taking T- TQ) = AT(2) for a+co, 

where AT(2) is the second-order perturbation in the far field. Now we observe 
thet tbe &st-order perturbation AT(l), which represents the effect of a force 
doublet, behaves like  XI-^ for 1x1 -+a, where 1x1 is of course the distance from 
the particle centre. Provided, then, that AT(2) = O ( / X ~ - ~ )  for 1x1 -fa, we expect 
the surface and volume integrals in question to be of a. smaller order for a --f co 
than those retained in (4.11), namely O(ATo) versus O(AT(1)). 

Without carrying out a, more detailed investigation of the second-order terms, 
we shall assume that their large-1x1 behaviour is as required to render (4.11) 
valid for a -+ co. If so, then we have by (4.7), for the stress quantity of significance, 

that (81) (cs-Tee) = s $ ~ ) + s ~ + o ( ~ ; ) ,  

where 
(4.12) 

which is identical in form with the corresponding Newtonian result (Batchelor 
1971), as is (3.34). Consequently, (4.12) can in general be cast into the more 

convenient form s1 - 810) = $5(q), (4.13) 

where 
(4.14) 

denotes here the particle volume fraction in the suspension and (a) represents 
an  effective volume-average particle stress, given by 

(4.15) 

with [defined by (4.38). We recall that in (4.12) and (4.13), as in related formulae, 
the stresses have all been rendered dimensionless by division by p*eo. 

In  the case of the shear-dominated behaviour of $2.4, the expression (3.47) 
for +(O) applies and, on the basis of the analysis of $3, we assume that it also 
determines the magnitude of the error in the asymptotic formulae (4.12) and 
(4.13), for a -f 00. If, further, the fluid exhibits shear-thinning behaviour then the 
more explicit formula (3.49) applies as well. For example, with the power-law 
fluid of (2.51) end (2.52), one obtains 

form > 1. 

(4.16) 
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Compared with the corresponding Newtonian result (Batchelor 1971) 

(4.16) implies a greatly diminished particle influence for a+a,  as already 
suggested by the analysis of I, and as we would expect for more general shear- 
thinning behaviour. 

I n  conclusion we note that, as usual, there is a restriction on the particle 
concentrations for which our dilute-suspension formulae are applicable. As 
already done for the Newtonian case by Batchelor (197 1), one can employ far- 
field expressions like (3.24) to estimate the strength of particle interactions, 
from which one concludes that (4.12) or (4.13) will be valid for volume fractions 
q5 such that s1 - sIO)< 1 ; that is, such that the collective stress contribution from 
the particles is small. However, in contrast to the Newtonian case, the present 
analysis indicates that the stress contribution of an individual particle can be 
intrinsically small, suggesting the same will be true of particle interactions and 
collective effects in relatively more concentrated suspensions. 

This work was partly supported by a National Science Foundation Grant 
GK 38303. It was presented in part (as paper 8B) at the 46th Annual Society of 
Rheology Meeting, St Louis, 27 October 1975, and (as MS no. 7737, paper 68d) 
at the 68th Annual American Institute of Chemical Engineering Meeting, Los 
Angeles, 19 November 1975. This work was largely done in the University of 
Michigan Department of Chemical Engineering. 

Appendix. Rheological assumptions 
Here we record some of the rheological representations and properties that are 

imputed to the fluid in the preceding analysis. We recall that the No11 fluid, which 
serves as a general model of an isotropic fluid-like substance, is a material for 
which the stress tensor for a material particle a t  the ‘present time’ can be 
regarded as a functional on the past history of the velocity gradient for that 
particle, account being taken of the ‘objectivity’ or ‘frame-indifference ’ under 
rigid-body rotations. 

We shall not bother here to elaborate on this notion mathematically, since 
several existing treatises (Truesdell 1966; Coleman, Markovitz & No11 1966; 
Pipkin 1972) cover the subject thoroughly. Rather, we merely adopt outlines of 
the methods employed by others, e.g. by Coleman et al. (1966), to deduce the 
form of stress tensor used in the present work. Specifically, we observe that the 
axisymmetric velocity gradient I’ given by (2.28) can be expressed alternatively 
as 

where the subscripts 1, 2 and 3 refer respectively to z, r and 8, as used in the 
text above, and where N and its transpose NT are the nilpotent ‘dyads’ 

with 

r =ylN+y2NT+elN.NT+e2NT.N-e31, (A 1) 

N = ili2, 

N2 E N. N = 0, (NT)2 = NT. NT = 0. 

NT = i,il, 

i2.il = 0, 
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These are familiar in the theory of viscometric flows for which the e’s all vanish 
and one of the shear rates may, without loss of generality, be taken as identically 
zero. 

Thus, with the past history of the velocity gradient being represented by 
(A 1) for every material particle, we can state that the stress tensor T at any 
particle is a (symmetric) function of the tensor N and a functional on the scalar 
coefficients in (A 1), which we denote by (y, e ) .  Therefore, because of the nil- 
potency of N it  follows, exactly as with viscometric flows, that the most general 
form *Or is 

(A 3) 
where, for the incompressible fluid assumed here, pis a rheologically indeterminate 
(or ‘dynamic ’) pressure, andt,  d, and A,  are scalar functionals on the history of 
the scalars (y, e) .  

T = t ( N  + NT) + d, N. NT+d, NT. N - I, 

Qwi-s teady  $OW 
In  the case of a materially steady flow the scalars (7, e )  are independent of time 
when viewed from the history of any given material particle and, up to a time- 
dependent rotation or ‘change of frame’, the form (A 1) represents in effect a 
so-called flow of ‘constant stretch history’ (Truesdell 1966; Pipkin 1972). In  
this case, we may regard the functionalst, d, and d, as functions t ,  s1 and 8, of 
the ‘present’ or local, instantaneous values of (y, e )  a t  a given particle, as waa 
done in the quasi-steady approximation of f 2. 

As an approximation, the assumption of quasi-steady flow can in principle be 
based on the smallness of the material time rates of change of I’ (or, more pre- 
cisely, the rates of change of its symmetric part, the rate-of-deformation tensor 
E, with allowance being made for changes of frame), provided that one has re- 
course to a theory of stress relaxation or ‘fading memory’ (Coleman & No11 
1961). 

For the purposes of the present work, we assume simply tha t  this can be made 
to correspond to a criterion of the form 

161 Q \el ,  (A 4) 

where A denotes a relaxation time for the fluid, while e denotes any of the quan- 
tities e and y in (A 1) and d refers to a ‘substantial’ or material rate of change. 
Given the basic far-field flow (1.3), the criterion (A 4) represents, first of all, 
a restriction on the time rate of change of the far-field extension rate e,. I n  
addition, and to ensure that convective rates of change are small throughout the 
flow field, one concludes by means of elementary dimensional considerations that 
(A 4) will lead to a further restriction, of the global form 

he, Q 1. (A 5 )  

Now, if interpreted in too strict a sense (A 5) would imply a restriction to  the 
Newtonian rbgime. However, a little reflexion leads one to  conclude that (A 5 )  
should in fact be interpreted in a local sense, with h denoting an effective relaxa- 
tion time for the local kinematics. As pointed out in an earlier analysis (I),? 

t However, the kinematical justifications given in that analysis for the assumption of 
quasi-steady viscometric behaviour are not correct. 
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there is evidence to suggest that in real fluids the effective relaxation times for 
flows with large deformation rates may be much smaller than those associated 
with a rest state, that is, with ‘linear viscoelasticity’. Interpreted in this light, 
(A 5 )  may in reality represent a much milder restriction on e,, which in the present 
context allows quasi-steady and simultaneous nonlinear behaviour. 

Rhwlogiml functions 
The functional forms of the coefficients t ,  81 and sz in (A 3) and their quasi- 
steady counterparts t ,  8, and 82 are restricted by the principle of objectivity or 
frame indifference. For the quasi-steady case one also has recourse to the theory 
of flows with constant stretch history, and the associated representations of an 
isotropic tensor function.? However, for the relatively elementary form (A 1) 
one can establish, in a rather direct way, the isotropic representation 

where, with E and S2 defined as in (3.2), E2 = E. E and 

E‘ = E + E . s L - s ~ . E .  (A 7) 

The scalar coefficients 7, 6 and 5 in (A 6) are functions of the joint (isotropic) 
scalar invariants of the kinematic tensor E and E’, and it will be noted that the 
tensor E’ is nothing more than the well-known Jaumann derivative of E. In  the 
frame of reference associated with the representation (A 1) the material derivative 
E is understood to vanish, which would not be the case for other frames, differing 
by an arbitrary unsteady rotation. 

The representation (A 6) can be derived by noting that the three kinematic 
tensors involved can be expressed linearly in terms of the unit tensor I and the 
three symmetric tensors N + NT, N . NT and NT. N of (A l),  and hence that 
the latter can be linearly related to the former (all being regarded, if one chooses, 
as elements in a linear space of symmetric tensors). 

It is interesting to note that, as with (A 3), the form (A 6) is similar to the 
representation for stress associated with viscometric flows (cf. Goddard 1967) 
and, as such, could equally well have been expressed in terms of the first two 
Rivlin-Erichen tensors. 

We further observe that the quasi-steady forms t ,  s, and s, of the rheological 
functions in (A 3) can be expressed as 

= 7(3/1+YZ)-c(3/1-Y2) ( e l - e Z ) + c ( e l + e Z )  (‘Yl+Y2)7 

81 = 2q(ei - + C ( Y ~  - 7 2 )  (71 + YZ) + 2ELeZ1- 4 + ~(YI + YZ)’J, 

52 = %(ez - e d  - C ( Y ~  - 7 2 )  (71 + 72) + %Get - 4 + I(Y~+ YZ)’I, 

t In which, we recall, ‘Wang’s theorem’ (Truesdell 1966) tells us that the stress can be 
represented as an isotropic tensor function of the first three Rivlin-Ericksen tensors, also 
implying an alternative function of the rate of deformation and its first two Jaumann 
derivatives. 
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where, for incompressible fluids, e3 = - (el+ e2). I n  this case, the rheological 
coefficients 7, and E depend on the.set of invariants 

9= tr{E2, E3, E'. E, E'2, ...} 

= 2{re:+e$+ele2+y21, C%+e2) bJ2-e1e2)1, [ W 2 - Y 1 )  (el-e,)YI, 

( 7 2  - Y1I2 rr2 + *(el - e2)21, - * .I, (A 9) 

where y = i(yl + y2)  and where tr { } denotes the set of traces of the tensors in 
the set { }. Without attempting to establish the complete minimal set of inde- 
pendent invariants, we simply note several properties of the terms shown expli- 
citly in (A 8) and (A 9) that are pertinent to the limiting rheological behaviour 
of the fluid. First of all, for viscometric flows, where el = e2 = 0 and, say, y2 = 0, 
such that the sole independent invariant is proportional to  y:, we recover the 
well-known result that 7, 5 and E must be even functions of yl. 

Second, and as regards the assumption of shear-dominated behaviour in 
0 2.4, we note that if a --f 00, with 

71 = w, 7 2  = O(l/a), el = O(l),  e2 = W), 

9 w  2{Yl,xyl(el+e2), M(e2-e1)&, ... I. 
then 

2 3 2  

Thus, in addition to the terms in e, and e2 shown explicitly in (A 8), the in- 
variants 9 and, hence, the functions 7, g and 5 will depend asymptotically on 
el and e2 in the above limit. Therefore, the earlier postulate (I) of shear-dominated 
behaviour implies a very special class of fluid models. 

Finally, we consider the derivatives of (A 8), which govern stress perturbations 
in the basic far-field flow, in order to establish the validity of (2.32) and the 
relation between the representations (A 8) and (3.1). For the most part, it  is a 
straightforward matter to evaluate the various first-order derivatives of the 
rheological functions in (A 8) for the basic flow el = e,, e2 = e3 = - Se,, yl = yz = 0. 
Thus, for example, one has directly from (A 8) 

where the subscript zero denotes, of course, the value taken in the basic flow 
under consideration. However, the functions 7 and E depend on the invariants 
(A 9), which are homogeneous polynomial forms, of degree two at least, in (y, e). 
It follows by the chain rule that the y1 derivatives in (A 11) must vanish in 
the basic flow, provided that 7 and k are analytic in the invariants. 

Hence, with t,his assumption of smoothness near the far-field state, one can 
confirm the remaining relations for the derivatives in (2.32). I n  addition, one 
finds that the material constants in (3.1) are given in terms of the functions (A 8 )  

by 
I P = 70 + *Eoeo, y = K o e o ,  

, ~ " = r l , - E o ~ o .  
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We recall that, with the convention of (2.3), these would be scaled by a factor 
of ,u*. It is interesting to observe that the shear stress is independent of vorticity 
in (3.1) only if c,, = 0, which, as mentioned in $3.1, will be the case for certain 
restricted fluid models, such as the Reiner-Rivlin fluid, for which (A 6) with 
6 = 0 applies to any flow. 
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